新聞資訊

劉知青:AlphaGo存在致命弱點 期待柯潔能找出

信息分類:行業新聞  發布時間:2017/05/16  責任編輯:圍棋小編  作者/來源:新浪體育
劉知青
5月16日,北郵教授劉知青在廈門大學翔安校區圖書館舉行“圍棋與人工智能”講座,介紹人工智能圍棋中的深度卷積神經網絡機器學習方法,討論人工智能機器學習的應用,展望柯潔與AlphaGo的人機大戰,表示AlphaGo肯定存在問題,為柯潔加油,期待他能找出AlphaGo的弱點。
劉知青表示,即使AlphaGo與柯潔對決的版本進步很多,但仍存在致命弱點。在與李世石對決之前,我就和大多數人觀點不一樣,認為李世石會輸。這次大家都不看好柯潔,但我就持不同看法,以子之矛攻子之盾,AlphaGo自己與自己下棋,肯定有一方會輸。我們也在訓練人工智能網絡,認為問題是存在的。柯潔應該也知道對手有弱點。我有信心看到柯潔給AlphaGo很大壓力,希望能暴露出AlphaGo的問題。如《荀子·儒效》所說的百聞不如一見:不聞不若聞之,聞之不若見之,見之不若知之,知之不若行之,學至于行之而止矣。AlphaGo人工智能也是這么做的。
烏鎮圍棋峰會后,谷歌DeepMind團隊應該會披露更多信息,目前我們僅能通過一年前戰勝李世石的版本所披露的信息來分析,與柯潔對決的版本一定有更多提升。圍棋對于計算機主要有兩大技術困難,落子選點和形勢判斷。AlphaGo核心技術突破包括:使用深度學習卷積神經網絡理解圍棋的落子選點與形勢判斷;結合蒙特卡洛樹搜索技術進行博弈樹的搜索以選擇雙方最佳落子變化。
AlphaGo以策略網絡用于圍棋落子選點:給定圍棋盤面作為輸入,策略網絡輸出落子選點的概率分布。以數學函數方式模擬人的大腦神經元構建,AlphaGo的中間層用了13個卷積神經網絡層構建,而最前沿的人工智能在中間層用了多達150層來計算。策略網絡通過3000萬圍棋落子樣例數據,使用有監督機器學習算法所訓練。AlphaGo論文透露訓練這3000萬樣例用了三星期,最近公布使用新方法極大提高了訓練速度。
AlphaGo以價值網絡用于圍棋形勢判斷:給定圍棋盤面作為輸入,價值網絡輸出勝率的估計。價值網絡由13個卷積神經網絡層所構建,通過3000萬盤圍棋對弈樣例數據,使用增強型機器學習算法所訓練。
1959年Arthur Samuel曾說,Gives “computers the ability to leearn without being explicitly programmed,” 讓計算機自己去學習。機器學習是人工智能最前沿的研究方法,人工智能的研究經歷了從“推理”到“知識”再到“學習”的發展過程。機器學習已廣泛應用于諸多領域:數據挖掘、計算機視覺、自然語言處理、生物特征識別、搜索引擎、醫學診斷、檢測信用卡欺詐、證券市場分析、DNA序列測序、語音和手寫識別、戰略游戲和機器人等。AlphaGo采用的就是有監督機器學習(Supervised learning)。
展望未來,機器智能高速發展。機器學習將促使機器智能以指數級發展,會產生更多新型智能形態,會在不同智能形態上達到前所未見水平。人類與機器將更緊密結合在一起,機器會為人類提供更強大的智能支持。人類為機器智能的進步提供驅動力。未來機器是否具有自我驅動力,將是徹底改變未來場景的未知數。

隨后的提問環節,有學生詢問,AlphaGo也會自我對局,從輸棋中不斷進步,如何以子之矛攻子之盾?
劉知青:圍棋理論上存在最優解的話,無論AlphaGo多強大,都還未達到那個程度。以子之矛攻子之盾,總是會有一方要輸的,我有直覺,因做過研究,所以人工智能肯定是存在問題的。要為柯潔加油,檢驗出這個問題。
問:AlphaGo、絕藝、DeepZenGo的棋風不同是什么原因?
黃子忠:從我這個棋迷來看,三個軟件的投入不一樣,不是一個級別。
劉知青:子忠說的很對。絕藝投入非常多,而谷歌收購DeepMind投入更多。三者技術路線一樣,但技術差別可以很大,比如都選用15萬盤數據,但可能選擇的數據參數不同,到最后實踐過程中會有巨大差別。
問:最近德州撲克人工智能也打敗了人類牌手,與AlphaGo孰優孰劣?

劉知青:相當于蘋果和梨的比較。德州撲克與圍棋都是局部有限級的內容,圍棋是全部信息公開,德州撲克是不完全信息公開,但也有概率分布,能知道牌的總數,不可能有5張A,可以通過數學模型和蒙特卡洛樹搜索來解決。智能有不同的智能,不必直接比較。AlphaGo使用神經網絡識別圍棋圖像,是有廣泛應用意義,比如今后識別心電圖圖像,所以我更看好圍棋AlphaGo。

問:AlphaGo如應用到象棋,是否能強過現有象棋軟件?

劉知青:本質上涉及到圍棋與象棋的不同。象棋幾乎是邏輯判斷游戲,比如我目標就是最終的將軍。圍棋不僅是邏輯,很大方面是形象思維過程,識別圖片的好壞,這在象棋方面非常弱。下圍棋與下象棋時,人類大腦活動掃描出來是很不一樣。神經網絡幫助我們從形象思維方面來識別圍棋,如直接將AlphaGo應用到象棋,發揮可能反而不如現有象棋軟件。智能有不同形態,人工智能不是萬能的,現在的人工智能強在圖像識別。

問:有個識別顏色的人工智能軟件,但似乎只在膚色方面非常敏感?

劉知青:不太熟悉這個人工智能軟件,不過很有可能是在訓練時,對人類膚色比較敏感,其他顏色的數據訓練沒那么多。另外,就是卷積數據核方面可能對人類膚色參數設置不同。可能今后還需要在神經網絡方面調整數據集。AlphaGo在圍棋某些方面可能更敏感,有些方面可能會弱一些,這就有可能是AlphaGo的弱點所在。

世界十大博彩公司排名-网上博彩公司排行大全-十大博彩公司官方平台_围棋协会